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ABSTRACT

A simplified but nonlinear model Is used for the autopilot in the

single-axis missile Interceptor problem. A recent exact design technique

for uncertain nonlinear feedback systems, is used to design the autopilot.

A large number of target initial range, position, velocity and acceleration

values were used. Also, uncertainty in the aerodynamic missile parameters

was allowed. The objective was to guarantee that the autopilot response

satisfied specified tolerances over the above ranges. This was

satisfactorily achieved. This autopilot design was then used in the

simulation of the single-axis interceptor system, over the above set of

target trajectories. The results were highly satisfactory.
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APPLICATION OF SYNTHESIS TECHNI QUE FOR NONLINEAR UNCERTAIN

SYSTEMS TO FLIGHT CONTROL OF ADVANCED MISSILES

1. INTRODUCTION

1.1. In many control systems there is a given constrained part, denoted

here as the Plant, whose output is the system output of Interest. Math-

ematically, the plant is represented by nonlinear differential equations.

Often, the parameters of the differential equations are not precisely known

and/or may change in time. Also, there may be external disturbances, such as

wind gusts, not known in advance. Generally, it is desired that the system

output satisfy given performance specifications, despite the parameter un-

certainty and the external disturbances, so a feedback structure is necessary.

There have not been available exact techniques for designing feedback

systems around nonlinear uncertain plants, so a variety of approximate

techniques have emerged. These are usually supplemented by considerable

testing and experimentation. However, there has recently appeared an exact

synthesis procedure fnr a large class of nonlinear plant (even nonlinear time-

varying) with significant parameter uncertainty [1,2]. The specialty of this

technique Is synthesis to satisfy assigned performance specifications. In

fact, the assignment of such performance specifications is essential - which

Is generally not an unreasonable demand. But even in those cases where there

Is uncertainty as to what constitutes reasonable performance, one may use his

best judgement to formulate them anyhow and proceed with the design technique.

If the performance specifications are unreasonable, the design which emerges

will reveal this, typically by signal levels at some points which exceed the

saturation values of plant elements. The specifications can then be suitably

mod ifled.

1.2. The Nonlinear Design Philosophy

To simplify the presentation, consider a nonlinear, time-invariant plant

* set (W - (w) (a set because of uncertainty). Each parameter combination

gives a different w . The basic Idea is to convert this set into a linear

time-invariant (denoted by Iti ) lant set P {p(s)) ,such that P is
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precisely equivalent to the nonlinear set W providing the output of any

P(s) in P belongs to the set of acceptable outputs. To help grasp this

Idea, consider a black box BI which contains a nonlinear element w0

Let the Input be xI and the resulting output be y1 - w0 (XI) Now one

could (in most cases) build another black box B2 containing a linear

element p such that for this same input xI the output is y, - p(x,)

If you are not allowed to apply any other input except xI , it is impossible

for you to determine which is the linear and which the nonlinear box. The

following is a simple technique for finding p . Obtain the Laplace trans-

forms of y,(t) , xl(t) : Y(S) - Ly1 (t) , X,(s) - Lx,(t) and let P(s) -

Y,(s)/X,(s) Then p(t) C 1P(s) and yl(t) - p(t)*x,(t) , where *

indicates linear convolution of signals. Hence two necessary conditions for

this equivalence of tti p to nonlinear w0 are:

1. The output y, - wo(x ) is unique or equivalently given y, , the input
-l

x - w0 (y) is unique,.

2. The signals y1(t) , X1 (t) are Laplace transformable. This condition

is difficult to violate.

Condition 1 excludes a large nonlinear class, e.g. hard saturation.

Nevertheless, this technique has been applied to the latter case, by replacing

the hard saturation by very low gain over the applicable intervals [2]. But

obviously, it is then essential that the specified set of desired system out-

puts, be consistent with the limitation due to saturation. Actually, a good

argument can be made for the violation of Condition 1, providing (a) the

single output y, can be associated with a compact set X, = W , i.e. a

set which can be approximated as accurately as desired by a finite number of

elements and (b) a small enough change in output y, results in a small

change in the associated xI  But this has not as yet been rigorously proven.

In any case, in the above, only one nonlinear plant w0  and one output

Y1 (t) were considered. The idea can be extended to uncountable sets

W - (w) and V - {y(t)} , as follows. We work backwards from the output of

the nonlinear plant, because in a synthesis problem one generally knows what

kind of outputs he would like to have In response to the command input (not

the plant Input - for example the latter could be the elevator control surface

while the former Is the pilot stick motion). Due to uncertainty, there is a



set of nonlinear plants ) - (w) . Take any pair yi E V wj E W and
1 -1 ifind xj(t) - w (y (t)) . Then find P j the tti equivalent of wj

(with respect to yl ). as shown above e.g., by finding Yi(s) - Lyl t)

X (s) - Lx (t) and setting Y s)/X I(s) ps) - Lpllt) . This is

repeated over the wj C W end the y E V giving a set P- aP 1 } . The

set P Is the ttl equivalent of ( . with respect to the set V . if (0

has 10 elements and V has 20, then P has 200 elements. In practice, both

9 and V are in general infinite and so Is P . Of course, in the execution

of the design technique a finite number of W and V elements are taken.

The above iti equivalence idea is the heart of the method. Once we

have a linear time-invariant plant set P , we have a purely fti problem.

It is essential that we be able to solve this Iti problem. For only then

it is guaranteed that the actual output is indeed a member of the acceptable

set V , no matter which w E W happens to be the actual plant. Thus, the

solution ( F(s) , G(s) in Figure I if eti compensation is used), to the

Iti problem is guaranteed to also be the solution of the nonlinear un-

certainty problem. It is important to emphasize that there are no approx-

imations involved here. The procedure is exact and theoretically rigorous.

In the above, only a single command input r-ra in Figure I was

assumed, and the output set V is the set of acceptable responses to r (t)a a

i.e. in Figure I it is required that c(t) E V . This is a highly exceptional

case. Usually one has a set R - (r) of typical inputs. Suppose one wants

the closed-loop system to essentially behave like a Wti one, in response to

these inputs, with transfer function T(s) C T , the set of acceptable transfer

functions. Note that a set of acceptable IT(s)) must be specified when there

is plant uncertainty, because invariance is impossible to achieve. Then the

overall total set V - (V ) is obtained by generatinq Y b(s) R a(s)Tb (s)

for the R E R , Tb E T . One then finds the tti equivalent of this totala

V set.

It is worth emphasizing that the synthesi% techniqute has even greater

flexibility. Suppose an overall closed-loop nonlinear system is desired, in

the following sense: For input ra one wants system response characterized

by Ta - Ta(s)) , but for input rb one wants system response characterized

by set Tb - T (s)) For example, suppose r is a unit step and its



FIGURE 1 Nonlinear set Wi is replaced by iti equivalent set9
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FIGURE 3 Missile-target geometry.
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acceptable response function set Is T .Suppose r b Is a unit ramp but

one does not want the system response to be the Integral of Its response

when the Input was a unit step, but of a different nature entirely. This

can be done. The F In Figure I must then be nonlinear. See Reference 2

for an example of such design. The output c(t) due to a two-value stop

need not be twice that of a unit-valued step etc., If one does not want It so.

It Is worth reemphasizing the Importance of the synthesis approach. One

must formulate the set of desired plant outputs or alternatively Its desired

set of Inputs. Otherwise It is not possible to find the ti equivalent set

P , which Is the basis of the technique. It Is also worth Including here, as
Appendix 1. the design results for an application of this design technique,

recently done for the U.S. Air Force. Here, the set of acceptable plant out-

puts was very clearly apriori specified at the very beginning. Unfortunately,

In our present case, however, a great deal of work, was required to obtain the

set of acceptable outputs.

2. STATEMENT OF THE PROBLEM

2.1. The problem considered is the single-axis missile iintercrptor

problem, shown In Figure 2. Feedback around the body pitch-rate is usually

used. The nonlinear missile equations of motion are usually linearized.

but If the missile has a large flight envelope, then such linearization may

be inadequate. The objective here is to use nonlinear equations of motion

and the Iti plant-equivalent method described In Section 1, to perform the

design of the auto-plls-t In Figure 2.

The equations describing Figure 2, are

Autopilot (Figure 3).
a - angle of attack (radians), 9-q - body axis pitch rate (r/s, s -seconds).

%- line of sight angle (r). y -velocity angle tangent to trajectory W,)

5 elevator deflection ()
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i~~~ ~~ ;.c[toa (6)61
e- m[K (a) + K6(6)6 + C2

YI

1h gQ/MV, per sec. , C3 -QD/A per sec 2. , C2 -KD/2V sec.

g 9.81 r/s2 (meters/sec 2) . Q- 176 kg. , K - -1000 (2)

M 70 k (kgm) . Vm - 200 m/s , D - .17 , A- 3.8 /

KILO  C (L.07+1.3a) , KL6  - CL6(15+1.16) (3-d)

K met - C m(-8.6- 2a) , Ks - C m6(25 + .8 )

In (3a-d), the coefficients are independently uncertain.

CLa CL6 ,CmaCnM E (0.8 * 1.2) (4)

2Geometry: Ym .V/s Vm a 200 M/s (5)

(the hat over the time function represents its Laplace transform).

aot
2

Input: The target position YTarg " YO + V0 t + 2 (6)

YO E [0.2001m , v0 E (0,10]m/s

a0 E (0,21m/s
2

These give the range of target position (initial), velocity and acceleration

values, constants in a specific run.

Feedback equations:

A - arc tan x - t cos N (8)
AX 'y - YTarg m - R

R (range) C 11500,30001m (9)

N (Fig. 2) E (2,4) (10)

Initial conditions:

;(0) -Y"(O) "e(O) - mo - (0) - S(o) - 0 (11)
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3. APPLICATION OF NONLINEAR SYNTHESIS TECHNIQUE

3.1. The Set of Acceptable Outputs V .It was emphasized in Section 1,

that It Is Imperative that a set of acceptable plant outputs V ,be specified,

In order to obtain the tti equivalent set P . The latter set Is guaranteed

to be the correct equivalent of the nonlinear plant set W0 , only for the set

V (although It may and usually is so, for a larger set than V ). Hence, it

is essential that V contain the true typical nonlinear plant outputs which

are desired under actual working conditions, including the extreme cases.

Here, the nonlinear synthesis technique is to be applied to the portion

labelled A/P (autopilot), in Figure 2 and the nonlinear plant ( w of

Section 1) is the portion from 6 to ; . So the set V refers to the set

of desirable that exist over the range of conditions described by

Equations (1-10), with particular attention paid to the parameter uncertainty

spread given in Equations (4,7,9,10).

To achieve such a V in the present case, the -.utopilot in Figure 2 was

modelled as a second order system with transfer function (for )/X where

the hat over a time function represents its Laplace transform).

NW
2

n
; 52 + rw~+2 ,N of Eq. (10) (12)

s+2wn s gn

nE (1,41 ; = .7 .(13)

This second-order simulation of the autopilot replaced the autopilot in

Figure 2. Several hundred runs were made of this simplified Figure 2 system.

The fictitious '(t values so obtained, i.e. the output of this second order

simulation, provided the acceptable set V . Each y E V was then used as

a known signal in Equations (la-c), to solve for 5(t) , S(t) . giving an

tti equivalent P(s)

3.2. The LTI Equivalent Set

Several hundred random combinations were used of the 10 parameters of

Equations (4,7,9,10,13) in the above manner. For each combination, the time

functions 8(t) , 6(t) were obtained to give the Eti plant equivalent.

Note that 5(t) rather than ;(t) is used at this stage for the nonlinear

plant output, because the feedback is taken from 0.A representative
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number of these time function pairs Is shown In Figures ha-q. In these

a&d later figures:

XN - N (Eq. 10) , AT - aO  (Eq. 7)

VW -v 0  (Eq. 7) , XMO- Y0  (Eq. 7)

R.- R (Eq. 9) , WN w (Eq. 13) , (14)

CLA - CLa (Eq. 3a) , CLO - CLa (Eq. 3b)

CMA- Cm i (Eq. 3c) . CMD- Cma (Eq. 3d)

The Itl equivalent P(jw)

PJW) - O(Jw)/6(Jw) (is)

3.3. The Frequency-Response Calculation Problem

At first, attempts were made to find 6(jw) , 6(jw) separately and

perform the division in (15). Adaptive numerical Integration, of

Cos Wtsin Wt dt was made, in the sense that the time Increment for

numerical Integration was shortened as w was increased. For'many cases,

good results were obtained. For many others, the results were quite poor In

the high-frequency range. Other computer library techniques,

including "Fast Fourier Transform", were tried and found to be highly in-

adequate in the high-frequency range. These routines are adequate for

connunlcation-oriented problems, where good accuracy over the signal band-

width, Is usually sufficient. However, in a feedback-c.-lented problem such

as the present one, with significant parameter uncertainty, good accuracy Is

needed for a very much larger frequency range. It is especially Important

to have clean results for several octaves In the high-frequency asymptotic

region. Thus, given a signal x(t) and its transform X(s) , as s

X(s) - k/sep , where e is the excess of X(s) poles over zeros. In feed-

back problems of the present type, it is essential to have good results for

several octaves in this range.

In our problem, It turned out eventually that P(Jw) , the ratio In

(15), was relatively simple. However, each of 0 , 6 was very complex, with

the complexity cancelling out In the division. After numerical Integration

was found Inadequate at high frequencies, it was thought to use a separate
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representation for i(t) ,6(t) ,for small t ,since the latter corresponds

to large w values in the signal transforms. The Taylor series expansion

was used. A computer program was prepared which used a large number of time

samples and an optimization routine, to find the best Taylor series fit for

some range t E [O,T/m] , m a fraction of the run time. Numerical Integration

was also used. If there was an overlapping frequency range where the two

techniques gave very similar values, then the results were considered satis-

factory. The numerical integration results were then used in the low frequency

range, and the Taylor series results in the high-frequency range. This

approach was helpful for a significant number of runs, but there still

remained a substantial number of cases where it too failed. Figures 5a,b are

illustrative of the 1P(i)I of Equation (15) obtained in such cases.

Finally, a new technique, original (to the best of our knowledge), was

developed in which P(jw) was found directly, without first finding 6(jw)

6(jw) of Equation (15). In this way, there is avoided the problem of finding

the very complex e(jw) , 6(j) . This technique is described in Appendix 2,

and is a valuable byproduct of the research effort. Some results are shown

in Figures 6a-f. To check the results, numerous runs were made in which the

6(t) signal was the input to iti network with the transfer function P(jw)

gotten by the above. Numerical inverse transform integration was used to find

the resulting output. Representative results are shown in Figures 7a-c. In

each of these figures, the first part gives the 6 (t) , 6(t) signals obtained

from the original simulation described in 3.1. The second part shows IP()i
obtained by the new method. Arg P(jw) was obtained but is not shown. The

third part gives L 1P(j ) )(jw ) - 6*(t) , which should be checked against

6(t) of the first figure. It is seen that excellent agreement was obtained.

3.4. Review of LTI Synthesis Technique

Once C , the Zti plant equivalent of the nonlinear plant set W has

been obtained, the problem becomes one of designing a eti feedback system

to cope with uncertainty of a tti plant. A detailed synthesis technique

for this purpose is described in Reference 3, which is briefly reviewed here.
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Figure 8 is used, in which the closed-loop transfer function is

T(s) - F(s) GPs) It is assumed that the compensation networks F G1 S +GP' s)

whose power level can be very low (as the plant contains the power elements),

can be constructed with negligible uncertainty in their transfer functions.

Hence, due to the uncertainty in P ,

AJMT An G M An L L-GP (16)

and AUnIT(Jw)I " l&I . (17)

There are given w-domain specifications on IT(Jw)l , as in Figure 9. Given

that the maximum allowed change A~nIT(jw)I C 61 db for example at wi in

Figure 9 , what are the resulting constraints on L(jw) 1 It is convenient

to pick a "nominal" plant Po(s) , and derive the bounds on the resulting
"nominal" loop function L0 - P0G . These bounds can be found by means of a

digital computer, but it is very useful for insight to see it done on the

Nichols chart (logarithmic complex plane with abcIssa in degrees, ordinate

in decibels - 20 loglo). The procedure is illustrated for the case

P(s) - ka ; Itkz10 ; 1 as10 . (18)

sls+a)

At w-2 rps , P(J2) lies within the boundaries given by ABCD in Figure 10.

Since InL - InG + LnP , the pattern outlined by ABCD may be translated, but

not rotated, on the Nichols chart, the amount of translation being given by

the value of InG(J2) . For example, if a trial design of L(J2) corresponds

to the template P(J2) at A'B'C'D' In Figure 10, then

IG(j2)ldb - IL(j2)ldb - IP(J2) Idb (19a)

(-2.0) - (-13.0) - 11.0 db

Arg G(J2) Arg L(J2) - Arg P(J2)
(19b)

- (-60) - (-153-49 - 93.4(

3.4.2. Bounds on L(jw) in the Nichols chart

The templates of P(jw) are manipulated to find the position of L(jw)

which results in the specifications of Figure 9 on EnlT(jw)I being satisfied.

Taking the w-2 template, one tries, for example, .,ositioning It, as shown
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d(t)
D(s)

R(s) F(s) G(s) P(s) it)

r(t) C(s)
-I

FIGURE 8 LTI two-deqree-of-freedom structure.

I I

0 1 %

ws\\%ITlmox

-20 \ .

ITImin\

-40.

FGU 9 Bounds on IT(it)I.
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in Figure 10, at A'B'C'D'. Contours of constant tnIL/(1+L)I are available

on the Nichols chart. Using these contours, it is seen that the maximum

change in tnIL/(l+L)l , which from (17) is the maximum change in InITI is,

in this case, very closely (-0.49) - (-5.7) - 5.2 db , the maximum being at

point C', the minimum at point A'. Suppose that the specifications tolerate

a change of 6.5 db at w-2 , so the above trial position of IL(j2)f is in

this case more than satisfactory. The template is lowered on the Nichols

chart to A"B"CO, where the extreme value of tnIL/(+L) I are at C"

(-0.7 db), A" (-7.2 db). Thus if Arg LA(J2) - -60- , then -4.2 db is the

smallest magnitude of LA(j2) which satisfies the 6.5 db specification for

AtnITI . Any larger magnitude is satisfactory but represents over-design at

that frequency. The manipulation of the w-2 template is repeated along a

new vertical line, and a corresponding new minimum of ILA(j2)I found.

Sufficient points are obtained in this manner to permit drawing a continuous

curve of the bound on LA(j2) , as shown in Figure 10. The above is repeated

at other frequencies, resulting in a family of boundaries on LA(j2)

3.4.3. Nature of the bounds on L(jw)

A typical set of bounds is shown in Figure 11. The bounds tend to move

down in the Nichols chart (become less onerous), obviously because as W

increases, greater change in IT(jw)l is permitted, as in Figure 9. It is

in fact essential that at large enough w , the uncertainty in IT(jw)l

(i.e., the bounds on IT(jw)I ) be greater than the uncertainty in P(jw)

because the net sensitivity reduction is always zero in any practical system

as was long ago (41 shown by Bode,

J QnlSp(jw)ldwm .nll +L(jw)Idw 0 (20)
0 0

where S T/T is the sensitivity function.

In the above example, as w -' , P -+ ka/s , so AinIPI Atn(ka) -

40 db Note in Fiqure 9 that the permitted &EnIT(jw)I >>40 db for

w'>50 Such large tolerances on IT(jw)I at large w are tolerable because

IT(jw)l is negligible at large w , e.g., if IP(Jw)t can change at most by

40 db at large w but IT(jw)l changes by 52 db, who cares if this 52 db

change is from ITImin - O"0 to ITImax to 400 x IO6 In return, one can

mm max . ... -
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concentrate the sensitivity reduction over the bandwidth of T(Jw) . Thus,

although IP(jw)I In this region vales by say 40 db, IT(Jw) I may be

controlled to vary by only 4 db, or 0.04 db if desired.

3.4.4. Universal high-frequency boundary

As noted, in the high-frequency range AtnjT(jw)I must realistically

be allowed to be "> AtnIP(.j)w)I and this is reflected in the bounds on

L0 (Jw) tending to a very narrow pencil. In Figure 12, Bp  is drawn for the' V

case AtnL - Atnk - 20 db . AtnIT(jw) I - Atn)L/(0+L)) 23 db at w ,

However, the resulting peak value of IL/(I+L)1 Is 23 db - 14.1 arithmetic

at k-kma , indicating a highly under-damped pole pair at the corresponding

frequency with damping ratio F.-0.034 , when k -k This tremendous

peaking does not appear In the system response to the command inputs R

because it is filtered out by the pre-filter F in Figure 8. But the system

response to a disturbance D Is given by Td - C/O - (I+L) - I . Disturbance

attenuation generates its own requirements on L , which may lead to more

stringent bounds on L than those due to T(4,w) The final contours used

in the desiqn 13] must be the most stringent composite of the two. However,

even if D is very small, It is usually certain that a peak 1ld of 1i.I

Is intolerable. It Is reasonable to add a requIilit'mnt ITdI s I some

constant, for all w and over the whole range of P parameter values.
d

The resulting constraining contours denoted by Bh ae shown in Figuce 12

for the cate Afnk - 20 db , and for I - 2.3, 3.5, 5 dh (all these contours

are synunetrical with respect to the verical line Art L - -180* on the

Nichols' ch,-rt). If i -5 dh Is used, then B(w= ) indicates the composite

contour shown in Figure 12. For w uvWv . IAT(i,)l increase while 1

remains the samie, so that sooner or later there Is ieached a frequency

w 3 8(w) is a fixed boundary Bh , effective V w

3.4-.5. The optimum LUO)

It has been shown 151 a realistic definition of optimum in the tItl

system is the minimization of k , defined by Ilir L(s) - ks , where e

is the exces. of pole% over zeros assigned to L(s)

It has been proven 151 that the optimum L lies on its boundary B1

at each I'i and that such an optimum exi,,ts and is unique. Most Important
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for the present purpose, is that in significant plant ignorance problems

the ideal optimal L has the properties shown in Figure 13, i.e., over a

significant range it follows 8h along UV to the point J at which it

abruptly jumps to infinity along WW'W" and returns on the vertical line YZ,

whose phase is (-900).e . Such an ideal L(juj) is, of course, impractical.

A practical suboptimum L is shown in Figure 13.

Some results of a numerical design example are shown in Figure 14.

They were derived for the following problem.

Numerical example. (Figure 14)

Plant: P IP1P2

Plant ignorance: P1  kl/s v k 1 1O/2-

P2 -k/ 2 2 < Iv2

Performance Specification: Shown in Figure 9 were originally derived

from time domain bounds 151.

Disturbance response: y < 2.0 db

The derivation of a rational Lo(s) which satisfies the bounds B(GO)

on L0 ( w) , is somewhat of an art. For a given skill in the art, there is

trade-off between desiqn complexity and L0(jw) bandwidth reduction. Some

computer proqram-, have been prepared for automatic derivation of a pia(tical

optimum L(iw) , but complicated 8(w) patterns require human interaction.

3.4.6. Desin.of prefilter F(s)

The above only guarantees that A log IT(j41 -, the relative change

allowed by the tolerances in Fiqure 9. For example at w, 9 say the allowed

ITI x -1.6 db . and allowed ITJ,,in -22 db , I.e. a maximum change (if

14.14 db. A proper design of L0(s) in the manner described above only

guarantees that the change of IL/I+LJ t 14.4 db . But it is possible for

IL(jwI)/I +L(jwtl)I to actually be, for example, in the range 1.2 db to

-8 db. The function of the prefilter F(jw) in Figure 8, is to achieve the

shift needed. In this example any IF(j 1f)l E [-8.8,-11] db is satisfactory,

an allowance of 5.2 db because L0 (jw1 ) was overdesigned by 5.2 db.
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We now turn to the application of the methods of Section 3.4 to our

present problem.

3.5. Design of Autopilot

Section 3.3 described how the frequency response P(jw) of the Iti

equivalent plant was obtained. Following 3.4.1, the next step is to find

Tp(w) templates of P(jw) , for a reasonable number of discrete w values.

Tp(w 1) is simply the set (P(ju )) . A number of these are shown In

Figure 15, in which the case marked by the large star is the chosen nominal

plant function Po(jw) . At very small w , Tp(w) is a vertical line because

then P(jW) a constant of zero phase but a different constant for different

parameter combinations. At laoqe w , each P(s) - kp/s in the case, with

kp a function of the parameter. Hence Tp(w) is again a vertical line.

Note the relatively small area of Tp(w) , indicating rather small un-

certainty. Compare these Tp(w) with those in the aircraft flight control

problem of Appendix I (see Figures 6a-c, Appendix i). In the latter some

P E P are unstable (e.g. cases e,f in Figure 5 there). This is also seen

from Appendix 1, Figure 6, where there are two verical line sub-templates

3600 apart, due to toe two groups of Iti P(jw) , one stable and the other

with two right half-plane poles. The uncertainty and nonlinearity in this

missile problem are considerably less than in the aircraft problem of

Appendix 1.

The bounds on IT(i,,,)l (recall 3.4, Figure 9) are needed. These are

determined by the model T(s) in Equations (12,13), used for the autopilot.

The resulting permissible spread in IT(iw)j , due to w n allowed to range

E [1,41 , is shown in Figure 16. The procedure described in 3.4.1 (Figure 10,

etc.) is next followed to find the bounds on L0(Jw) . These are shown in

Figure 17. The bounds are very moderate ones, due to the relatively small

Tp(w) sizes (small effective uncertainty in P(jw) ), and generous IT(jw)l

tolerances. In view of these small demands, a very generous L.(Jm) was

chosen which satisfied the bounds B(w) , with much to spare - shown in

Figures 17,18.
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Design of Prefilter. The design of F(s) of Figure 8, to satisfy the

bounds on IT(jw)l of Figure 9, has been described in 3.4.6. Our problem

is more complicated because the feedback loop is around 5 , while the

tolerances are on the y response in Figure 2. It is therefore necessary

to derive i/i which multiplies the bounds on y , to give the resulting

bounds on 0 . A serious difficulty would arise if the uncertainty (spread)

in 6/; was of the same order of magnitude as that of P(jw) - 0/6 It is

essential that the former be somewhat less than the latter. Fortunately, in

this example there is little uncertainty in 8/y . Numerous runs (as des-

cribed in 3.2), were made, giving ;(t) , (t) . The new technique of

Appendix 2 was used to find 6/ . Representative samples are shown in

Figures 19a-f, and it is seen that there is little uncertainty in 6/; In

each of Figures 19a-f, the first part gives the time functions, and the

second the frequency response 16(iW)/(jw) . The new bounds on IT(jw) l

due to 6 being considered as the autopilot output, are given in Table 2.

The old bounds, due to I as output, are given in Table 1. The bounds on

IF(jw)l were then obtained, as explained in 3.4.6, resulting in

F(S) ( 48
Tss = s1.5)(s+4)(s +8)

3.6. Design Simulation - Local

It is important to recall that the nonlinear design technique has been

applied only to the autopilot in Figure 2 - not to the entire closed-loop

system of Figure 2. The proper verification of the design is then only for

this autopilot portion. To effect this verification, the simulation of 3.2

was used to derive which became the input driving our above-designed

autopilot. In the latter, there were used aerodynamic equations (1-3) and

the G(s) , F(s) of 3.5. Thus, only the autopilot as a self-contained

closed-loop system was checked at this point - not as a part of the larger

closed-loop structure of Figure 12. The results of the simulation for a

representative number of runs, including the extreme (largest 6 values),

are shown in Figures 20a-e, for 6(t) and 6(t) . Each figure has three

parts. The first repeats the result obtained in the simulation of 3.2 with

the second-order T(s) model of Equations (12,13) (i.e. same as in

WOA
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Figures (4a-q)). The second part uses the same input (to the autopllot)

as in the first part and the outer loop is not closed. It is only a test of

the autopilot and is therefore denoted as "local feedback simulation". In

the third part the outer loop is closed, so the simulation is that of a

practical" system.

It is seen that in general the 6(t) , 9(t) values in the last two

parts are larger in magnitude, but considerably smoother than in the first.

But in considering the actual tracking, the outer loop was not found

satisfactory. This is next treated.

3.7. Outer Loop Modification and Global Simulation

The above autopilot design was next Imbedded into the over-all structure

of Figure 2, and the tracking examined ( YT and Ym ) . In a sense it Is an

unfair comparison of the nonlinear design technique, because the latter was

executed only for the autopilot part. In any case, when effected, the poorest

results were the three shown in Figure 21, In which YT(t) represents the

target trajectory and ym(t) , the missile trajectry. The run is stopped

precisely when R - Vmt cos y , i.e. when Ax-U . A perfect hit requires

YT " Ym precisely at this end-point. In Figure 21a, there is an error of

6 meters, and much smaller errors in 21b,c. Also, the ym(t) trajectories

in Figures 21a,b are much too oscillatory.

The reson for the above is due to the fact that the design was, up to

this point, completely a local one -of the autopilot alone, to achieve a

specified response range for the autopilot. No overall global closed-loop

response w~s considered at all. The logical procedure at this point would

be to find the Iti equivalent of the time-varying portion of the structure

(i.e. of the A - tan "1 Ay/Ax portion) and apply the design technique to

the outer loop. The nonlinear design technique applies also to linear and

nonlinear time-varying uncertain plants - see Reference 1. However, there

was Insufficient time left for effecting such a design. Therefore an ad-hoc

modification of the prefilter F(s) was made, with the new

F(s) - (s+l)(s+4)(s+d)(s+12)
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This gave much better results, shown in Figures 22a-t, whose inter-

pretation is the same as of Figure 21. The star (explosion) indicates an

"error" < 2 meters, interpreted as a "hit". Of all the runs made, there

was only one case where the error N 3 meters, in Figure 22s.

To complete the picture, a large number of runs of the variables

6 , , accel - V'/g are shown in Figures 23a-p.

-
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Nomenclature

a - parameter in model of T(s)

B(w) - bounds on G(jw)

C - mean aerodynamic chord, m

Cij(a) various aerodynamic coefficients

c -- output variable = a handling qualities criterion

Ca*s - Lc*(t)

db -- decibels (20 log lo )

eG - excess of poles over zeros of G(s)

F(s)- prefilter transfer function

g -- gravity acceleration 9.8 m/sec
2

G(s) - loop compensation function

I -- moment of interia in pitch, kgm-m
2

k -- see R

Iti - linear time-invariant

L(s) - G(s)P(s) , loop transfer function

Z- Laplace transform

m -- mass of vehicle, kgm

up - minimum-phase

nmp - non minimum-phase

p(t), p, equivalent lti plant function

P(s) X P(t)

P/ set (p) or (P(s))

q - 0 - pitch angular velocity

r(t) system command input

R(s) r(t) = k/s

P set (r(t)) or (R(s)1
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* -- complex variable

S w wing surface area, m2

T(s) closed loop transfer funct:,;

set (T(s))

J -- template of P - P(jw)

U -- vertical velocity, m/sec
v - horizontal velocity - V0 constant
w -- nonlinear plant function, y = w(x)

w - inverse of w , x - w (y)

Sset (w)

x, x input to nonlinear plant

X(s) - x(t)

yyi acceptable output of plant

Y(s) Zy M

Sset (y}

a angle of attack

6 elevator deflection

A(s) A (t)

parameter in model of T(s)

P air density, kgm/m 3

W frequency, rps

I
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FLIHT CONTROL i)ESI(24 BASIVP ON NONLINEAR

MODEL WITH UNCERTAIN PARAMETERS

I NTRODUICT ION

In most flight conitrol des;ign techniiIties * the notnvnar dirfferent ial

equations are linearized about a trim condition. The resulting~ Increment.-I

* linear time invariant (LUi) model with its fixed avrodtviimic coefficits1,

is reasonably valid for small excursions from trim. By tisfiig di ffe'rent trim

points, there are obtained different sets of coefficient vahties. The model

Is then taken as lti ,In which these sets are treated either

(1) as uncertain parameters in a iti design techniquec for secuiring specl.!it'd

* performance over the uncertain paraimeter set, or

(2) as known functions of Mach and dynamic pressure. The latter are

monitored, leading to a "Schedulinig" design, or

(3) as untcertain parametets to be Identified and coiiesa i .d for in a so-cal1led

"Adaptive" design.

A combination of all three may also be used. However, in all of these

approaches the model uised is iti

There have recently been attempts at Incorporatinug the non! mean ties t o

some extent into the system model, the vehicle for doing so beitig optimal control

theory. Hiowever, the calculations have been very laborious, reqiring considerable

approximations (see Ref. 1 and Its references for discussio-n). This paper takes

a far different approach and is based on a recent 2synthiesis tech~nique for

feedback aronnd a nonlinear uncertain plant, the latter denoting the constrained

part of the system. This synthesis technique has the following Important

properties.
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1. For a large class of practical nonlinear plants, the design is precise

and direct with no approximations even for highly nonlinear (even nonlinear

time-varying) models with large uncertainties in the plant parameters.

2. Design execution is in the frequency domain.

REVIEW OF NONLINEAR DESIGN TECHNIQUE

The key ingredient is the extension to sets of an idea often used by

engineers: Given a specific nonlinear element w , it is usually possible to

find an Iti element p which is equivalent, in a certain sense, to w for

a single specific output yl(t) (or input x1 (t)): Let y1(t) - w(X(t))

be the (assumed) unf.qie output of w due to input x1 (t) . Choose p so

that its output is also yI when its input is xI(t) . A simple way to do

this is to find (Laplace transform) fyl(t) Y 1 (s) 'and 1 x1 (t) Xl(s)

Then let P(s) Y1 (s)/XI(s) , giving p(t) - 1-1 P(s) the Itt equivalent

of w * but only for the special case when the input is x. IHence, the two

essential conditions are: (1) w has a unique inverse, thus excluding hard

saturation etc. which, however, cotld be replaced by very low gain over the

appropriate interval. (2) the desired plant output y(t) and the resulting

x a w- (y) , are Laplace transformable, a condition difficult to violate.

This eqivalence idea can be extended to a set of nonlinear plants

{w) for which a Iti set denoted by 41 can be found which is equivalent

to I*, with respect to y,(t) . Simply find pt the y,-equivalent of w,

for each w kand let 1 (p} . A further extension is to find a Iti

got Pwhich is eqivalent to Afwith respect to a set of outputs (y [yjl.

To find *, repeat the previous for each yj C Y giving r and then
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if ) . has 10 elements and has 20 , has 200 members.

But in general, both X_ and are uncountable and so is 4P.

In Fig. 1, the closed-loop system is to behave like a Iti one, with

transfer function T(s) , in response to any command input in a set (Z {r)

and for any w- , i.e. £y(t) 4 Y(s) - T(s)R(s) , where R(s)orr(t)

However, due to the uncertainty, a set of acceptable iT(s)} - must be

specified, insomuch as dynamic invariant response for all w in * is

impossible. The sets 4? 'j determine the set of desired acceptable systen,

outputs I " {y(t) , via Iy(t) = Y(s) - T(s)R(s) , or vice versa. The

nonlinear set is then replaced by the lti set e which is equivalent

to e with respect to . We say that is mp (minimum-phase) with

respect to ,if all P(s) E have no zeros in the right half-plane,and

stable if they all have no such poles. In our specific problem AP is mp

but not stable.

We now have a pure Iti feedback problem: Find the lti compensation

F(s) , G(s) needed in Fig. 1, such that the system transfer function

T a FiLMQl , L- GP , is a member of the set 9 1 no matter which P E

is used. A frequency-response design technique for a very general problem

class 3
, is available for minimum-phase 6. l may have unstable elements.

If this Iti problem is solvable, then under quite general conditions the

solution (i.e., the F(s) , G(s) compensation pair used) is also precisely

valid for the original nonlinear problem. The details and proof2 involve

functional analysis techniques. However, design executibn involves frequency-

response concepts, as next seen.
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PROBLEM STATEmeNT AND EXECUTION

Nonlinear Plant. The nonlinear plant is described by Eqs. 1-3 (see

Nomenclature Section).

pvoS

u qV0 + g cos 6 2 [ 1CN (a ) + CN6( a )6] ()

C 
Iv (2,3)

12.40 + ( V6 + 60) (4)

°tu4 4) 5.6

is the Output to be controlled, i.e. to be in . The numbers used are

2 2
I - 207,000 kg m , m = 17,600 kg , C = 4.89 meters , S = 49.2 m . They

C j(a) are nonlinear functions of a , see Fig. 24 Since a (Fig. 9 )

ranges in 10,350], there is strong nonlinear operation. The horizontal

velocity v was taken as V0  fixed, which is incorrect for some low-velocity

cases, but the objective here is to demonstrate the validity of the design

technique in a strongly nonlinear situation, which is achieved sufficiently

by means of the nonlinear C j(a)

The bounds4 on the acceptable c*(t) in response to a unit step command

are included in Fig. 3, which also includes design simulation results. The

set of command inputs R consists of steps 1 to 5 in magnitude. Parameter

uncertainty is due to 0 ranging in [.3,1.22] and V0  In [75,2061 . Initial

conditions are Z(O) - j(0) - q(0) - 0 , Q(O) 0(0) , giving initial values

for 6 (as well as u , 0 , a) which is substracted out so that the change

in 6 is used to find the lti equivalent * set . The detailed steps in the

design implementation are next presented, with comments postponed to the end.
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Step 1. The Iti set e. Let /c(t) C (s) - T(s)R(s)

R(s) - k/s with k E [1,5] and T(s) E , derived from the bounds in

Fig. 3. A simple means for generating , taken from Ref. 5, is to let

T(s) - a 2(s + 2.9)/2.9(s 2 4 2Cas + a2 ) , C ranging in [3.7, 1.5] , a in

(3.14, 7.61 , giving the bounds on !T(J Ij in Fig. 4. Such bounds suf f i Ci

for up (and obviously stable) T(s) . Anv T(s) , R(s) pair thus generates

an acceptable c (t) A romputer program solved Eqs. (1-4) backwards for

S(t) and then checkotd the reozult by solving Eqs. (1,4) forward-, for c (t)

from .(t) The program was considered adequatet only when excelleut agreemotit*!
was obtained over the entire range considered. C (s) was aprlori available ind

.N( V,) (t) 1 was obtaized ly numeri-al i tito at ion. As c* is a - d

criterion and for all the acceptable case. has definityiv reached steady-state

in 4 secouls (see Fig. 3), Fqs. (1.4) were solved only for t E [0,4 seconds].

and the constant 5(4) was used for t - 4

Loci of six P(jL) are shown In Fig. 5, two of them (e,f) unstable

with a pair of right half-plane poles, which are zeros of A(s). The set

includes a large number of such unstable lti Pks) , which tilt t Iti des ign

techniqtl can easily handle.

Plant templates. At any ci say wu - w1 , the set {P(jw)) , P

consists of a region in the logarithmic complex plant (Nichols chart) detnoted

as the w -plant template jp(,,1 ) . A number of (w,,) are shown in

Figs. 6a-c. At very small w there are two almost constant angle sub-templatt's

360* apart. This is due the presence of both stable and unstable P E

and the fact that Arg P near w - 0 is either ; 0 or nr/2 for

some integer n . As w increases, the two groups merge together and

approach a single vertical line at large to well beyond the plant "dynamics"

W



(w- 12 is large enough in this case, see Fig. 6a-c). Note how this frequency

response approach is indifferent to system order.

Step_.. Bounds R(uw) on G(j_ ) Given the set 60 (P) the problem is

to find F(s) , G(s) In Fig. I such that the system transfer function

T(jw) - FGP/(I+GP) E , for all 1" E 1. One may program the computer

to find the (unique) bounds Ii(a,) on G(j ) , so that as P ranges over

n(J) Ain (A G2[A2(,,) - A (w) I db of Fig. 4. Alternat ively,

this may be done by hand. givitig useful insight: The template of 1,(.1') 1 -

G(juw1)P(Jw 1 ) is that of P , shifted (in the Nichols chart) by Arg ((.I

in the x axis and by 20 1 oel, OC(J,,,1 ) in the y axis. Suppose 3P( 2)

is given by ABCI) in Fig. 7 and one tries positioning, it at A'B'C'i)' * to

give the template of L(J2) . From the contours of constant lI/(1+1) I in

the Nichols chart , it. is seen that the maximum changc in IT(.j2)1 is then

closely (-.4Q) - (-S.7) 5.2 db , with maximum at C' , minimum at A'

Suppose the IT(je) tolerance permits a maximum chainge of 6.5 d at w' 2

so the above trial is conservative. The template may be shifted lower to

A"1"C"D" 0 ,at which the [T(jw) I tolerances are precisely satisfied. Choose

some specific P as nominal, e.g., point A giving 1o(12) -lj d2)

Since 1. 002) (A" in Fig. 7) - .2 db the corresponding bound on

G(12) - l.0 (2)/P 0 (12) is 8.8 db 132.4i , i.e., if Arg G(12) is q3.4*

it is necessary for JG(j2)j ' 8.8 db , in order that AIT(j2) 6.5 db due

to the uncertainty in P(J2) . This manipulation of p(2) is repeated

along a new vertical line, giving another point on the boundary 8(2) of

permissible G(J2)
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Fig. 8 shows the bounds so obtained on (;(j,,,) , and the G(w) chosen

to satisfy these bounds. Let eG be the excess of poles over zeros assigned
e G

to G(s) , so that as s - , - k /s . It is reasonable to define

the optimum G as that which satisfies its bounds with minimum k . It has(V

been shown 7 that Go lies on B(G) at all w and that G exists and

is unique. The design of a practical G(s) to satisfy the bounds is some-

what of an art 3
. For a given skill in the art the greater the number of

poles and zeros of G , the closer one can get to the optimum, so there is

trade-off between complexity and bandwidth. Here, we chose simply by cut

and try G(s) = (I + .2s/s(l + .033s 2)(1 + .002s + 10- s 2 ) with very modest

bandwidth, Figs. 4, 8. A much simpler G(s) could have been chosen with

larger bandwidth. The designer must make his own trade-off. Ref. 3 offers

some advice on the shaping of a function to satisfy a set (,() I In the

Nichols chart.

SDen _g_ of F(,). C(s) only guarantees that A IT( J,,)l - A (w)-A (A')

of Fig. 4, e.g., at w 10 , the actual change in IL(JlO)/(I+I,(jlO))M is

from -7 db to 4 db , while from Fig. 4, the permitted change In

IT(JlO)l = IFL/(I+L)I is from -15 to 2.8 db . Hence. any value of

IF(JlO)1 E [-8, -1.2 db] is acceptable. In this way. tipper and lower bounds

on IF(J0)j are obtained and F(s) is chosen to satisfy them, which Is also

somewhat of an art. In this example, a satisfactory F(s-- .

2
(l+.25s)(I+.2s)(l+.0125s) , see Fig. 4.
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Design Results. The nonlinear system was simulated and its response found

for several hundred command inputs and gust disturbances, some of which are

shown in Figs. 3, 9-12. Some typical responses to c step commands are shown

in Fig. 3 for various Vo , p and step (k) values. The assigned bounds on

c are also shown. The transient response of a(t) , 6(t) etc. depend, of

course, on the values of k , p , V0 ' Two sets of these are shown in Figs.

9a, b, with Fig. 9a depicting very large a(t) excursion, for which the

C ij(a) in Fig. 2 are in strongly nonlinear ranges. These are the inputs

for which the system was designed, and for which guarantees can he made. In

a very few cases there was very slight excursion out of the bounds. It is

possible to include in the design other inputs and gust disturbances, with

specified response tolerances - and then guarantees can be made for these as

well. The response to other inputs is nevertheless found here to be also quite

satisfactory. This is typical of the design, i.e., the system Is not very

sharply tuned to the class of inputs used in the design execution. There is

reasonable response continuity to other inputs.

Some responses to very large c* step commands causing hard _ t saturation

are shown in Fig. 10. Response to Gust Disturbances. The gust Input was
-1U

modelled by replacing a in (3; by a = tan V + agus t  Two kinds (f

agust were used. In one agust is a half-sine wave of amplitude 20/V 0 radians

and half-period THALF E [.2,2]sec . Some results are shown inf Figs. lla,b.

In both, the gust begins precisely at the instant of application of simultaneous

c step commands. The second kind, as in Fig. llb, is stochastic guassian with

2 2power spectrum k/(l+w )V 0  and (agust) M s - 6/V 0 radians. Examples of

responses to a single square wave c command with equal positive and negative

values k and total duration 2 THALF are shown in Fig. 12.
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DISCUSSION AND CONCIUSIONS

A second-order model was used Ior r(s) with 'x..ss of poles ovel zerosi

e T - I , in Step 1. This :-ppears to he Incompatihle with (, F fifth order

and excesses e G " 4 , e F - 2 , and P (no anailytical expression htut I lielr I zed

(1 -4) give second-order 1P) with el, - 0 . Strict d,.sIgn execution aipp,ars

to require a T(s) of complexity compatihle with T - F GI'/(l 4 G1). Note,

however, that In Step 1, the model of T(s) is ustd only to generate i qot

which covers the range of apriorl RI pL, fl ed acceptabsle, outplts . Any T(s)

model, which achieves this is clearly s.atisfactory, and th e, simpler tlhe beter.

The designer can Iater choose the complexity elf C(q) , F(s) , with it( r.gard

for that of the T(s) model used In ",te". j.

The class of appl icable n I itlv'.rtI has been deftnod impiJc itly fii

Ref. 2, but one very large class can ihe deii ed explicitlv. Let D I(t

D2 x(t) with D1 , D 2 operators whliclh may he itotil Itinar, incer tioIn And

time-varying, e.g.

5 A + Bit e~ l  I ) 2

D y - (y)M-qg j,+(NV ~'~jj~l{i1.F. 4 Ft.

EE (1,51 ,F E (.5,41 ,A E 1-1,61 , aE(515

B (-3,21 , lE 1-4,11 , n E .5,21 , ME (1,51

The range of M must be of the same sign. All. y E and D1 y ,,uni be

bounded for all t in 10,-,] and D1 y must exist. Hence y muist b, twice,

differentiable except, at most, at a countable number of points. Thenuu

D1 y * (t) is known and there munt exist A unique solution for x in

D2 x 0 V(t) . The solution must lie bounded for all t E 10,,,] Thus,

D2 x * *(t) must be "bounded-Iiput , hounded-output" stnlil.. itowevr,

D1 z(t) " v(t) may he "unt l, I l' n that a boullded \,(t) Is 41 lowu'd to ru,!;ull
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in unbounded z(t) , It is only necessary that bounded z(t) gives boundc.d

v(t).

It is possible that a simple linearization might do just as well In

practice, but this is a matter of chance, whereas this design technique is

guaranteed to work if the constraintsare satisfied. It can be argued that

the constraint of uniqueness may be waived in Sec. 2, if the set of inputs

x(t)) which can give the single output y(t) , Is "compact", i.e. if that

set can be covered as accurately as desired by a finite number of elements.

A single w , y pair then generates a set of Iti P instead of only one.

However, this has not been rigorously proven as yet.

The constraint on >" that R is mp, is required because only then

can one guarantee that any specifications no matter how narrow (A 2-AI

arbitrarily small but nonzero in Fig. 4),may be satisfied for arbitrarily

large but bounded parameter uncertainty (but some parameters must not change

sign7). No such gurantee can be made for nmp , but the problem is still

solvable if the specifications are not too narrow and 62is not too large 8'9

a set.

FInally, a recent extension 7is to linear and nonllnear multiple input-

output systems, where the problem is transformed into the design of n

single-loop Iti systems like Fig. 1.
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FIGURE TITLES

Figure 1. System structure. ;I/ (w) is replaced by =p)

Figure 2. Aerodynamic coefficients Cij()

Figure 3. Normalized bounds on acceptable c*(t) Representative

simulation results.

Figure 4. Bounds on IT(jw)I Bode plots of designed IF(jw)I IG(j,,,)I

Fiqureg 5. Loci of typical Iti P(jw) Cases e,f are open-loop unstable.

k 4 n V 0  P 6ma x ma x

(a) 1 1.0 3.77 180 .36 6.3 16.4

(b) 2 1.0 3.77 100 1.05 11.0 23.5

(c) 4 .45 5.66 120 .1.05 18.6 29.3

(d) 4 .45 5.66 117 1.05 22.4 31.3

(e) 4 1.0 3.77 230 .36 13.8 27.0

(f) 3 .92 7.54 180 .36 27.4 34.2

Figures 6a-c. Templates gpwG,) of {P(jw)} at w r .04, 1.9, 12

Figure 7. Hand derivation of bounds on L(jt ) in Nichols chart.

Figure 8. Bounds B(w) on G(Jw) , and G(jw) chosen.
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Figure 9 a~b. Representative responses of Q(t), , 6, c*.

Figure 10. Responses for input causing hard 8 saturation.

Figure 11. Responses to gusts and simultaneous c* step command

(a) half-sine gust, (b) random gaussian.

* Figure 12. Responses to square wave c* conmmand.
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APPENDIX 2

Derivation of the transfer function of a system,

from an input-output pair

Let x(t) , y(t) be the input and output of a system for t E [0,T]

Find a transfer function T(s) - Y(s)/X(s) , where Y(s) - Ly(t) , etc.

Actually, we seek a rational approximation of T(s) , P(s)/Q(s) , where P
I k

and Q are polynomiaik of degree in , n respectively. Let P(s) - 'pk sk

n k k0

Q(S) Y(S) - P X()

Y(s) P(s) .(sY(s) - P(s)X(s) Sn Sn

x(s) - QPs) X s Q(s)X(S)

If Y(S) is a rational function then Q(s) y(s) - ) x(s) - 0 is an
XS) n  Sn

exact representation. We seek the coefficients Pk qk which minimize

j= - PIo)~w

n qkY(Jw) m pkX(J 2) 2
1k- (JY)n-k - 0 (2)-'n O(w k-O (jw ) n

Parseval's formula gives J - J jf(t)j 2dt , where

f- qky (n-k) m _(n-k) (3)

k-O k,,O

y (t) , the i-times Integral of y(t) , f ,,, f y(t)df.
0 0

" f0 If(l2 at +  f If(t)I 2dt + f Iflt)I2dt f 0 If(t)l 2dt 0

r -0 T - ,

.1 2since y(t) 0 , x(t) - 0 for t 0; f Jf(t)j dt -0 , since x(t)II

T
y(t) for t 1T cn be defined correspondingly for any Pk , qk 'Therefore
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T I 2 dt (4)

0

and the minimization of J determines Pk qk uniquely.

Let x(t) , y(t) be given at the points t =O,h,2h,...Ih = T We

construct the integral y (t) by the following formulae:

y(-)(o) = 0 Y(-1)(ih) = y(-I)(h(i-1)) + t ly ih) +y(i-i)h)]

The multiple integrals y((t) , lk, n and x(-u)(t) , n-m<un are

computed in the same manner. We replace the integral (4) by the corresponding

sum:

q= k Y (n-k) ( i h ) - (n-k ) ( i h )

and determine the coefficients pk , qk as coefficients of linear regression

(by the least square method).

Remarks

(1) The degrees of the polynomials P(s) and Q(s) should be chosen

from the apriori information about the system. If apriori information is

lacking, different degree choices of P , Q may be tried and the best

selected. Another kind of apriori information which could be used in this

method is, for example, asymptotic behavior of the functions. The difference

in degree of P , Q can be judged by the difference in smoothness, at t -0

of x(t) and y(t) , because of the initial value theorem in Laplace

transforms.

(2) If the function P(s)/Q(s) is stable, then the approximation can

be checked by computation of i(t) = P [x(t)l and comparison of (t)

with y(t)

a
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